The SKIRT project
advanced radiative transfer for astrophysics
Public Member Functions | Protected Member Functions | Private Types | Private Attributes | Friends | List of all members
LyaNeutralHydrogenGasMix Class Reference

#include <LyaNeutralHydrogenGasMix.hpp>

Inheritance diagram for LyaNeutralHydrogenGasMix:
Inheritance graph
[legend]

Public Member Functions

double defaultTemperature () const
 
bool hasExtraSpecificState () const override
 
bool hasPolarizedScattering () const override
 
bool hasResonantScattering () const override
 
bool hasScatteringDispersion () const override
 
bool includePolarization () const
 
double indicativeTemperature (const MaterialState *state, const Array &Jv) const override
 
void initializeSpecificState (MaterialState *state, double metallicity, double temperature, const Array &params) const override
 
double mass () const override
 
MaterialType materialType () const override
 
double opacityAbs (double lambda, const MaterialState *state, const PhotonPacket *pp) const override
 
double opacityExt (double lambda, const MaterialState *state, const PhotonPacket *pp) const override
 
double opacitySca (double lambda, const MaterialState *state, const PhotonPacket *pp) const override
 
void peeloffScattering (double &I, double &Q, double &U, double &V, double &lambda, Direction bfkobs, Direction bfky, const MaterialState *state, const PhotonPacket *pp) const override
 
void performScattering (double lambda, const MaterialState *state, PhotonPacket *pp) const override
 
double sectionAbs (double lambda) const override
 
double sectionExt (double lambda) const override
 
double sectionSca (double lambda) const override
 
vector< StateVariablespecificStateVariableInfo () const override
 
- Public Member Functions inherited from MaterialMix
virtual double asymmpar (double lambda) const
 
virtual Array emissionSpectrum (const MaterialState *state, const Array &Jv) const
 
virtual DisjointWavelengthGridemissionWavelengthGrid () const
 
virtual Array emissivity (const Array &Jv) const
 
virtual bool hasContinuumEmission () const
 
virtual DynamicStateType hasDynamicMediumState () const
 
virtual bool hasExtraSpecificState () const
 
virtual bool hasLineEmission () const
 
virtual bool hasNegativeExtinction () const
 
virtual bool hasPolarizedAbsorption () const
 
virtual bool hasPolarizedEmission () const
 
virtual bool hasPolarizedScattering () const
 
virtual bool hasResonantScattering () const
 
virtual bool hasScatteringDispersion () const
 
virtual bool hasStochasticDustEmission () const
 
virtual double indicativeTemperature (const MaterialState *state, const Array &Jv) const
 
virtual void initializeSpecificState (MaterialState *state, double metallicity, double temperature, const Array &params) const
 
bool isDust () const
 
bool isElectrons () const
 
bool isGas () const
 
virtual bool isSpecificStateConverged (int numCells, int numUpdated, int numNotConverged, MaterialState *currentAggregate, MaterialState *previousAggregate) const
 
virtual Array lineEmissionCenters () const
 
virtual Array lineEmissionMasses () const
 
virtual Array lineEmissionSpectrum (const MaterialState *state, const Array &Jv) const
 
virtual double mass () const =0
 
virtual MaterialType materialType () const =0
 
virtual double opacityAbs (double lambda, const MaterialState *state, const PhotonPacket *pp) const =0
 
virtual double opacityExt (double lambda, const MaterialState *state, const PhotonPacket *pp) const =0
 
virtual double opacitySca (double lambda, const MaterialState *state, const PhotonPacket *pp) const =0
 
virtual vector< SnapshotParameterparameterInfo () const
 
virtual void peeloffScattering (double &I, double &Q, double &U, double &V, double &lambda, Direction bfkobs, Direction bfky, const MaterialState *state, const PhotonPacket *pp) const =0
 
virtual void performScattering (double lambda, const MaterialState *state, PhotonPacket *pp) const =0
 
virtual double sectionAbs (double lambda) const =0
 
virtual double sectionExt (double lambda) const =0
 
virtual const ArraysectionsAbs (double lambda) const
 
virtual const ArraysectionsAbspol (double lambda) const
 
virtual double sectionSca (double lambda) const =0
 
virtual vector< StateVariablespecificStateVariableInfo () const =0
 
virtual const ArraythetaGrid () const
 
virtual UpdateStatus updateSpecificState (MaterialState *state, const Array &Jv) const
 
- Public Member Functions inherited from SimulationItem
template<class T >
T * find (bool setup=true) const
 
template<class T >
T * interface (int levels=-999999, bool setup=true) const
 
virtual string itemName () const
 
void setup ()
 
string typeAndName () const
 
- Public Member Functions inherited from Item
 Item (const Item &)=delete
 
virtual ~Item ()
 
void addChild (Item *child)
 
const vector< Item * > & children () const
 
virtual void clearItemListProperty (const PropertyDef *property)
 
void destroyChild (Item *child)
 
virtual bool getBoolProperty (const PropertyDef *property) const
 
virtual vector< double > getDoubleListProperty (const PropertyDef *property) const
 
virtual double getDoubleProperty (const PropertyDef *property) const
 
virtual string getEnumProperty (const PropertyDef *property) const
 
virtual int getIntProperty (const PropertyDef *property) const
 
virtual vector< Item * > getItemListProperty (const PropertyDef *property) const
 
virtual ItemgetItemProperty (const PropertyDef *property) const
 
virtual string getStringProperty (const PropertyDef *property) const
 
int getUtilityProperty (string name) const
 
virtual void insertIntoItemListProperty (const PropertyDef *property, int index, Item *item)
 
Itemoperator= (const Item &)=delete
 
Itemparent () const
 
virtual void removeFromItemListProperty (const PropertyDef *property, int index)
 
virtual void setBoolProperty (const PropertyDef *property, bool value)
 
virtual void setDoubleListProperty (const PropertyDef *property, vector< double > value)
 
virtual void setDoubleProperty (const PropertyDef *property, double value)
 
virtual void setEnumProperty (const PropertyDef *property, string value)
 
virtual void setIntProperty (const PropertyDef *property, int value)
 
virtual void setItemProperty (const PropertyDef *property, Item *item)
 
virtual void setStringProperty (const PropertyDef *property, string value)
 
void setUtilityProperty (string name, int value)
 
virtual string type () const
 

Protected Member Functions

 LyaNeutralHydrogenGasMix ()
 
void setupSelfBefore () override
 
- Protected Member Functions inherited from MaterialMix
 MaterialMix ()
 
Configurationconfig () const
 
Randomrandom () const
 
void setupSelfBefore () override
 
- Protected Member Functions inherited from SimulationItem
 SimulationItem ()
 
virtual bool offersInterface (const std::type_info &interfaceTypeInfo) const
 
virtual void setupSelfAfter ()
 
virtual void setupSelfBefore ()
 
- Protected Member Functions inherited from Item
 Item ()
 

Private Types

using BaseType = MaterialMix
 
using ItemType = LyaNeutralHydrogenGasMix
 

Private Attributes

double _defaultTemperature
 
DipolePhaseFunction _dpf
 
bool _includePolarization
 

Friends

class ItemRegistry
 

Additional Inherited Members

- Public Types inherited from MaterialMix
enum class  DynamicStateType { None , Primary , Secondary , PrimaryIfMergedIterations }
 
enum class  MaterialType { Dust , Electrons , Gas }
 

Detailed Description

The LyaNeutralHydrogenGasMix class describes the material properties related to Lyman-alpha line transfer for a population of neutral hydrogen atoms, including support for polarization by scattering.

The spatial distributions for both the mass density and the temperature of the neutral hydrogen gas must be defined by the input model and are considered to be constant during the simulation. In this context, this material mix offers a configuration property to specify a default gas temperature that is used by geometric media as a fixed temperature across the spatial domain. Imported media offer an importTemperature flag that allows defining a different gas temperature for each particle or cell. In this case, the default dust temperature configured for the material mix is ignored.

This material mix also offers a configuration property to enable or disable support for polarization. It returns one of the Lya or LyaPolarization scattering modes depending on the configured value for this property. The dust-oriented functions for retrieving material properties are not used for the Lyman-alpha-specific aspects of the photon cycle, but some of them are used during setup, for example to normalize the mass of a geometric medium component based on optical depth. To this end, the scattering cross section is calculated using the configured default temperature and the absorption cross section is zero.

This item type is displayed only if the Boolean expression "Lya" evaluates to true after replacing the names by true or false depending on their presence.

When an item of this type is used, the names provided by the conditional value expression "GasMix" are inserted into the name sets used for evaluating Boolean expressions.

Constructor & Destructor Documentation

◆ LyaNeutralHydrogenGasMix()

LyaNeutralHydrogenGasMix::LyaNeutralHydrogenGasMix ( )
inlineprotected

Default constructor for concrete Item subclass LyaNeutralHydrogenGasMix : "neutral hydrogen for Lyman-alpha line transfer" .

Member Function Documentation

◆ defaultTemperature()

LyaNeutralHydrogenGasMix::defaultTemperature ( ) const
inline

This function returns the value of the discoverable double property defaultTemperature : "the default temperature of the neutral hydrogen gas" .

This property represents a physical quantity of type "temperature" .

The minimum value for this property is "[3" .

The maximum value for this property is "1e9]" .

The default value for this property is given by the conditional value expression "1e4" .

This property is displayed only if the Boolean expression "Level2" evaluates to true after replacing the names by true or false depending on their presence.

◆ hasExtraSpecificState()

bool LyaNeutralHydrogenGasMix::hasExtraSpecificState ( ) const
overridevirtual

This function returns true, indicating that the cross sections returned by this material mix depend on the values of specific state variables other than the number density, in this case the temperature.

Reimplemented from MaterialMix.

◆ hasPolarizedScattering()

bool LyaNeutralHydrogenGasMix::hasPolarizedScattering ( ) const
overridevirtual

This function returns the value of the includePolarization flag, indicating whether the material mix supports polarization during scattering events or not.

Reimplemented from MaterialMix.

◆ hasResonantScattering()

bool LyaNeutralHydrogenGasMix::hasResonantScattering ( ) const
overridevirtual

This function returns true, indicating that scattering for the material mix is resonant.

Reimplemented from MaterialMix.

◆ hasScatteringDispersion()

bool LyaNeutralHydrogenGasMix::hasScatteringDispersion ( ) const
overridevirtual

This function returns true, indicating that a scattering interaction for this material mix may (and usually does) adjust the wavelength of the interacting photon packet.

Reimplemented from MaterialMix.

◆ includePolarization()

LyaNeutralHydrogenGasMix::includePolarization ( ) const
inline

This function returns the value of the discoverable Boolean property includePolarization : "include support for polarization" .

The default value for this property is given by the conditional value expression "false" .

This property is displayed only if the Boolean expression "Level2" evaluates to true after replacing the names by true or false depending on their presence.

◆ indicativeTemperature()

double LyaNeutralHydrogenGasMix::indicativeTemperature ( const MaterialState state,
const Array Jv 
) const
overridevirtual

This function returns an indicative temperature of the material mix when it would be embedded in a given radiation field. The implementation in this class ignores the radiation field and returns the temperature stored in the specific state for the relevant spatial cell and medium component. Because the hydrogen temperature is not calculated self-consistently in our treatment, this value corresponds to the temperature defined by the input model at the start of the simulation.

Reimplemented from MaterialMix.

◆ initializeSpecificState()

void LyaNeutralHydrogenGasMix::initializeSpecificState ( MaterialState state,
double  metallicity,
double  temperature,
const Array params 
) const
overridevirtual

This function initializes the specific state variables requested by this fragmented dust mix through the specificStateVariableInfo() function except for the number density. For the Lyman-alpha material mix, the function initializes the temperature to the specified imported temperature, or if this is not available, to the user-configured default temperature for this material mix. The metallicity and custom parameter arguments are ignored.

Reimplemented from MaterialMix.

◆ mass()

double LyaNeutralHydrogenGasMix::mass ( ) const
overridevirtual

This function returns the mass of neutral hydrogen atom.

Implements MaterialMix.

◆ materialType()

MaterialType LyaNeutralHydrogenGasMix::materialType ( ) const
overridevirtual

This function returns the fundamental material type represented by this material mix, which is MaterialType::Gas.

Implements MaterialMix.

◆ opacityAbs()

double LyaNeutralHydrogenGasMix::opacityAbs ( double  lambda,
const MaterialState state,
const PhotonPacket pp 
) const
overridevirtual

This function returns the absorption opacity kabs=nςabs, which is trivially zero for the Lyman-alpha material mix.

Implements MaterialMix.

◆ opacityExt()

double LyaNeutralHydrogenGasMix::opacityExt ( double  lambda,
const MaterialState state,
const PhotonPacket pp 
) const
overridevirtual

This function returns the extinction opacity kext=kabs+ksca for the given wavelength and material state. The photon properties are not used. For the Lyman-alpha material mix, the extinction opacity equals the scattering opacity.

Implements MaterialMix.

◆ opacitySca()

double LyaNeutralHydrogenGasMix::opacitySca ( double  lambda,
const MaterialState state,
const PhotonPacket pp 
) const
overridevirtual

This function returns the scattering opacity ksca=nςsca for the given wavelength and material state. The photon properties are not used.

Implements MaterialMix.

◆ peeloffScattering()

void LyaNeutralHydrogenGasMix::peeloffScattering ( double &  I,
double &  Q,
double &  U,
double &  V,
double &  lambda,
Direction  bfkobs,
Direction  bfky,
const MaterialState state,
const PhotonPacket pp 
) const
overridevirtual

This function calculates the contribution of the medium component associated with this material mix to the peel-off photon luminosity, polarization state, and wavelength shift, for the given wavelength, geometry, material state, and photon properties. The contributions to the Stokes vector components are stored in the I, Q, U, V arguments, which are guaranteed to be initialized to zero by the caller, and the adjusted wavelength is stored in the lambda argument.

For the Lyman-alpha material mix, the function implements resonant scattering without or with support for polarization depending on the user-configured includePolarization property.

Implements MaterialMix.

◆ performScattering()

void LyaNeutralHydrogenGasMix::performScattering ( double  lambda,
const MaterialState state,
PhotonPacket pp 
) const
overridevirtual

This function performs a scattering event on the specified photon packet in the spatial cell and medium component represented by the specified material state and the receiving material mix. For the Lyman-alpha material mix, the function implements resonant scattering without or with support for polarization depending on the user-configured includePolarization property.

Implements MaterialMix.

◆ sectionAbs()

double LyaNeutralHydrogenGasMix::sectionAbs ( double  lambda) const
overridevirtual

This function returns the Lyman-alpha absorption cross section per hydrogen atom ςαabs(λ,Tdef) which is trivially zero for all wavelengths and temperatures.

Implements MaterialMix.

◆ sectionExt()

double LyaNeutralHydrogenGasMix::sectionExt ( double  lambda) const
overridevirtual

This function returns the total Lyman-alpha extinction cross section per hydrogen atom ςαext(λ,Tdef) at the given wavelength and using the default gas temperature configured for this material mix. The extinction cross section is identical to the scattering cross section because the absorption cross section is zero.

Implements MaterialMix.

◆ sectionSca()

double LyaNeutralHydrogenGasMix::sectionSca ( double  lambda) const
overridevirtual

This function returns the Lyman-alpha scattering cross section per hydrogen atom ςαsca(λ,Tdef) at the given wavelength and using the default gas temperature configured for this material mix.

Implements MaterialMix.

◆ setupSelfBefore()

void LyaNeutralHydrogenGasMix::setupSelfBefore ( )
overrideprotectedvirtual

This function initializes the DipolePhaseFunction instance held by this class.

Reimplemented from SimulationItem.

◆ specificStateVariableInfo()

vector< StateVariable > LyaNeutralHydrogenGasMix::specificStateVariableInfo ( ) const
overridevirtual

This function returns a list of StateVariable objects describing the specific state variables used by the receiving material mix. See the description of the MaterialMix::specificStateVariableInfo() function for more information.

The Lyman-alpha material mix requires a gas temperature in addition to the standard number density, so this function returns a list containing these two items.

Implements MaterialMix.


The documentation for this class was generated from the following file: