The SKIRT project
advanced radiative transfer for astrophysics
Public Member Functions | Protected Member Functions | Private Types | Private Attributes | Friends | List of all members
SpinFlipHydrogenGasMix Class Reference

#include <SpinFlipHydrogenGasMix.hpp>

Inheritance diagram for SpinFlipHydrogenGasMix:
Inheritance graph
[legend]

Public Member Functions

double defaultMetallicity () const
 
double defaultNeutralSurfaceDensity () const
 
double defaultTemperature () const
 
DynamicStateType hasDynamicMediumState () const override
 
bool hasExtraSpecificState () const override
 
bool hasLineEmission () const override
 
double indicativeTemperature (const MaterialState *state, const Array &Jv) const override
 
void initializeSpecificState (MaterialState *state, double metallicity, double temperature, const Array &params) const override
 
Array lineEmissionCenters () const override
 
Array lineEmissionMasses () const override
 
Array lineEmissionSpectrum (const MaterialState *state, const Array &Jv) const override
 
double mass () const override
 
double opacityAbs (double lambda, const MaterialState *state, const PhotonPacket *pp) const override
 
double opacityExt (double lambda, const MaterialState *state, const PhotonPacket *pp) const override
 
double opacitySca (double lambda, const MaterialState *state, const PhotonPacket *pp) const override
 
vector< SnapshotParameterparameterInfo () const override
 
void peeloffScattering (double &I, double &Q, double &U, double &V, double &lambda, Direction bfkobs, Direction bfky, const MaterialState *state, const PhotonPacket *pp) const override
 
void performScattering (double lambda, const MaterialState *state, PhotonPacket *pp) const override
 
double sectionAbs (double lambda) const override
 
double sectionExt (double lambda) const override
 
double sectionSca (double lambda) const override
 
vector< StateVariablespecificStateVariableInfo () const override
 
UpdateStatus updateSpecificState (MaterialState *state, const Array &Jv) const override
 
- Public Member Functions inherited from EmittingGasMix
MaterialType materialType () const override
 
double sourceWeight () const
 
double wavelengthBias () const
 
WavelengthDistributionwavelengthBiasDistribution () const
 
Range wavelengthRange () const override
 
- Public Member Functions inherited from MaterialMix
virtual double asymmpar (double lambda) const
 
virtual Array emissionSpectrum (const MaterialState *state, const Array &Jv) const
 
virtual DisjointWavelengthGridemissionWavelengthGrid () const
 
virtual Array emissivity (const Array &Jv) const
 
virtual bool hasContinuumEmission () const
 
virtual DynamicStateType hasDynamicMediumState () const
 
virtual bool hasExtraSpecificState () const
 
virtual bool hasLineEmission () const
 
virtual bool hasNegativeExtinction () const
 
virtual bool hasPolarizedAbsorption () const
 
virtual bool hasPolarizedEmission () const
 
virtual bool hasPolarizedScattering () const
 
virtual bool hasResonantScattering () const
 
virtual bool hasScatteringDispersion () const
 
virtual bool hasStochasticDustEmission () const
 
virtual double indicativeTemperature (const MaterialState *state, const Array &Jv) const
 
virtual void initializeSpecificState (MaterialState *state, double metallicity, double temperature, const Array &params) const
 
bool isDust () const
 
bool isElectrons () const
 
bool isGas () const
 
virtual bool isSpecificStateConverged (int numCells, int numUpdated, int numNotConverged, MaterialState *currentAggregate, MaterialState *previousAggregate) const
 
virtual Array lineEmissionCenters () const
 
virtual Array lineEmissionMasses () const
 
virtual Array lineEmissionSpectrum (const MaterialState *state, const Array &Jv) const
 
virtual double mass () const =0
 
virtual MaterialType materialType () const =0
 
virtual double opacityAbs (double lambda, const MaterialState *state, const PhotonPacket *pp) const =0
 
virtual double opacityExt (double lambda, const MaterialState *state, const PhotonPacket *pp) const =0
 
virtual double opacitySca (double lambda, const MaterialState *state, const PhotonPacket *pp) const =0
 
virtual vector< SnapshotParameterparameterInfo () const
 
virtual void peeloffScattering (double &I, double &Q, double &U, double &V, double &lambda, Direction bfkobs, Direction bfky, const MaterialState *state, const PhotonPacket *pp) const =0
 
virtual void performScattering (double lambda, const MaterialState *state, PhotonPacket *pp) const =0
 
virtual double sectionAbs (double lambda) const =0
 
virtual double sectionExt (double lambda) const =0
 
virtual const ArraysectionsAbs (double lambda) const
 
virtual const ArraysectionsAbspol (double lambda) const
 
virtual double sectionSca (double lambda) const =0
 
virtual vector< StateVariablespecificStateVariableInfo () const =0
 
virtual const ArraythetaGrid () const
 
virtual UpdateStatus updateSpecificState (MaterialState *state, const Array &Jv) const
 
- Public Member Functions inherited from SimulationItem
template<class T >
T * find (bool setup=true) const
 
template<class T >
T * interface (int levels=-999999, bool setup=true) const
 
virtual string itemName () const
 
void setup ()
 
string typeAndName () const
 
- Public Member Functions inherited from Item
 Item (const Item &)=delete
 
virtual ~Item ()
 
void addChild (Item *child)
 
const vector< Item * > & children () const
 
virtual void clearItemListProperty (const PropertyDef *property)
 
void destroyChild (Item *child)
 
virtual bool getBoolProperty (const PropertyDef *property) const
 
virtual vector< double > getDoubleListProperty (const PropertyDef *property) const
 
virtual double getDoubleProperty (const PropertyDef *property) const
 
virtual string getEnumProperty (const PropertyDef *property) const
 
virtual int getIntProperty (const PropertyDef *property) const
 
virtual vector< Item * > getItemListProperty (const PropertyDef *property) const
 
virtual ItemgetItemProperty (const PropertyDef *property) const
 
virtual string getStringProperty (const PropertyDef *property) const
 
int getUtilityProperty (string name) const
 
virtual void insertIntoItemListProperty (const PropertyDef *property, int index, Item *item)
 
Itemoperator= (const Item &)=delete
 
Itemparent () const
 
virtual void removeFromItemListProperty (const PropertyDef *property, int index)
 
virtual void setBoolProperty (const PropertyDef *property, bool value)
 
virtual void setDoubleListProperty (const PropertyDef *property, vector< double > value)
 
virtual void setDoubleProperty (const PropertyDef *property, double value)
 
virtual void setEnumProperty (const PropertyDef *property, string value)
 
virtual void setIntProperty (const PropertyDef *property, int value)
 
virtual void setItemProperty (const PropertyDef *property, Item *item)
 
virtual void setStringProperty (const PropertyDef *property, string value)
 
void setUtilityProperty (string name, int value)
 
virtual string type () const
 
- Public Member Functions inherited from WavelengthRangeInterface
virtual ~WavelengthRangeInterface ()
 
virtual Range wavelengthRange () const =0
 

Protected Member Functions

 SpinFlipHydrogenGasMix ()
 
void setupSelfBefore () override
 
- Protected Member Functions inherited from EmittingGasMix
 EmittingGasMix ()
 
- Protected Member Functions inherited from MaterialMix
 MaterialMix ()
 
Configurationconfig () const
 
Randomrandom () const
 
void setupSelfBefore () override
 
- Protected Member Functions inherited from SimulationItem
 SimulationItem ()
 
virtual bool offersInterface (const std::type_info &interfaceTypeInfo) const
 
virtual void setupSelfAfter ()
 
virtual void setupSelfBefore ()
 
- Protected Member Functions inherited from Item
 Item ()
 
- Protected Member Functions inherited from SourceWavelengthRangeInterface
 SourceWavelengthRangeInterface ()
 
- Protected Member Functions inherited from WavelengthRangeInterface
 WavelengthRangeInterface ()
 

Private Types

using BaseType = EmittingGasMix
 
using ItemType = SpinFlipHydrogenGasMix
 

Private Attributes

double _defaultMetallicity
 
double _defaultNeutralSurfaceDensity
 
double _defaultTemperature
 
int _indexUV
 

Friends

class ItemRegistry
 

Additional Inherited Members

- Public Types inherited from MaterialMix
enum class  DynamicStateType { None , Primary , Secondary , PrimaryIfMergedIterations }
 
enum class  MaterialType { Dust , Electrons , Gas }
 

Detailed Description

The SpinFlipHydrogenGasMix class describes the material properties related to the 21 cm spin-flip transition in neutral atomic hydrogen, including emission and absorption. The 21 cm emission luminosity and self-absorption opacity in a given cell are determined from gas properties defined in the input model (neutral hydrogen volume density, gas metallity, gas temperature, and neutral hydrogen surface density) and the local UV radiation field calculated by the simulation taking into account dust extinction.

Configuring the simulation

Simulations of the 21 cm the spin-flip transition usually include primary sources and a dust medium in addition to a medium component configured with the spin flip material mix (this class). During primary emission, the dust medium determines the UV radiation field, allowing the spin flip material mix to calculate the 21 cm line luminosity and absorption cross section for use during secondary emission. This calculation happens in the updateSpecificState() function, which is invoked at the end of primary emission (because the material mix advertises that it has a secondary dynamic medium state). This does imply that the 21 cm line absorption remains zero during primary emission, which is not a problem as long as the primary sources don't emit in the radio wavelength range. Thus, unless dust opacities are very high, there is no need for iteration over primary nor secondary emission.

If one is not interested in dust emission (i.e. only in the 21 cm line emission), the simulation mode can be set to "GasEmission" and the radiation field wavelength grid can be limited to a single bin in the UV wavelength range. This bin should be configured to cover the full Lyman-Werner band (912-1110 Å) so that it accurately captures all radiation that dissociates molecular hydrogen. Similarly, instrument wavelength grids can be limited to a relevant range around the 21 cm line center.

To calculate both the dust emission spectrum and the 21 cm line emission in the same simulation, the simulation mode must be set to "DustAndGasEmission" and the radiation field wavelength grid must now include and properly resolve the UV, optical, and infrared wavelength range. Separate instruments can be configured for the relevant wavelength ranges, e.g. using a logarithmic grid for the continuum spectrum and a linear grid for the 21 cm line profile.

The input model must provide values for the spatial distribution of four medium properties that remain constant during the simulation:

Most often, this information will be read from an input file by associating the spin flip material mix with a subclass of ImportedMedium. For that medium component, the ski file attributes importMetallicity and importTemperature must be set to 'true', and importVariableMixParams must be left at 'false'. The additional column required by the spin flip material mix (neutral hydrogen surface mass density) is automatically imported and is expected after all other columns. For example, if bulk velocities are also imported for this medium component (i.e. importVelocity is 'true'), the column order would be

\[ ..., n_\mathrm{HI+H2}, Z, T, v_\mathrm{x}, v_\mathrm{y}, v_\mathrm{z}, \Sigma_\mathrm{HI+H2} \]

Depending on the specific ImportedMedium subclass being used, the neutral hydrogen density distribution in the first column can be specified as a mass or number density, or as a volume-integrated mass or number for each cell or particle. In all cases, the value is automatically converted to the appropriate volume number density expected by this class. In contrast, the neutral hydrogen surface density must always be specified as a surface mass density, with default units of Msun/pc2.

Note
It is customary to obtain \(\Sigma_\mathrm{HI+H2}\) by multiplying \(n_\mathrm{HI+H2}\) with a specific length scale (and converting from number to mass density). Some authors use the Sobolev length, but most use the Jeans length. The Jeans length can be easily computed from the gas cell data (gas mass density, internal energy, hydrogen mass fraction, and electron fraction). This rough approximation broadly matches the interpretation of surface density in the partitioning scheme used by this class (see below).

For basic testing purposes, the spin flip material mix can also be associated with a geometric medium component. The geometry then defines the spatial neutral hydrogen density distribution (i.e. \(n_\mathrm{HI+H2}\)), and the spin flip material mix offers configuration properties to specify fixed default values for the other properties that will be used across the spatial domain.

Partitioning scheme

While the input model defines the neutral (i.e. non-ionized) hydrogen density distribution, the partitioning of the hydrogen gas into its atomic and molecular components must be determined based on the the UV radiation field calculated by the simulation. Since UV radiation in the Lyman-Werner band (912-1110 Å) dissociates molecular hydrogen, a hydrogen partitioning scheme usually has the UV field in that wavelength range as an important parameter. For this purpose, this class samples the radiation field \(J_\lambda(\lambda_\mathrm{UV})\) at \(\lambda_\mathrm{UV}=1000\,\mathrm{Å}\). The wavelength bin index for \(\lambda_\mathrm{UV}\) in the radiation field grid is determined during setup.

This class implements the column-density based partioning scheme of Gnedin & Draine 2014 (Apj, 795, 37), which is an update of Gnedin & Kravtsov 2011 (ApJ, 728, 88). The mechanism for estimating the length scale of a gas cell is taken from Diemer et al. 2018 (ApJS, 238, 33).

The scheme has the following input parameters:

With these input parameters, the partitioning scheme can be summarized as follows:

\[ S=L_\mathrm{cell}/100\,\mathrm{pc} \]

\[ D_\ast=0.17\frac{2+S^5}{1+S^5} \]

\[ g=\sqrt{D_\mathrm{MW}^2+D_\ast^2} \]

\[ \Sigma_c=5\times10^7\,\mathrm{M}_\odot\mathrm{kpc}^{-2}\times \Bigl(\frac{\sqrt{0.001+0.1U_\mathrm{MW}}}{g(1+1.69\sqrt{0.001+0.1U_\mathrm{MW}}}\Bigr) \]

\[ \alpha=0.5+\frac{1}{1+\sqrt{U_\mathrm{MW}D_\mathrm{MW}^2/600}} \]

\[ R_\mathrm{mol} = \Bigl(\frac{\Sigma_\mathrm{HI+H_2}}{\Sigma_c}\Bigr)^\alpha \]

\[ f_\mathrm{mol} = \frac{R_\mathrm{mol}}{R_\mathrm{mol}+1} \]

where \(f_\mathrm{mol}\) is the fraction of molecular hydrogen in the neutral hydrogen gas, and \(f_\mathrm{atom} = 1 - f_\mathrm{mol}\) is the corresponding atomic hydrogen fraction.

Emission

Following Draine 2011 Chapter 8, the integrated luminosity \(L\) of the 21 cm line for a given spatial cell can be written as

\[ L = \frac{3}{4} \,A_\mathrm{SF} \,\frac{hc}{\lambda_\mathrm{SF}} \,n_\mathrm{HI}V \]

where \(A_\mathrm{SF}=2.8843 \times 10^{-15} \,s^{-1}\) is the Einstein coefficient of the 21cm spin-flip transition, \(\lambda_\mathrm{SF} = 21.10611405413\times 10^{-2}\,\mathrm{m}\) is its wavelength, \(n_\mathrm{HI}\) is the number density of atomic hydrogen in the cell, and \(V\) is the cell volume.

The 21 cm line is extremely narrow so that the emerging line profile is dominated by the Doppler shift caused by the thermal motion of the atoms. The gas temperature defined in the input model is used to randomly shift the wavelength of each emitted photon packet according to a Maxwell-Boltzmann distribution. This happens outside of this class in the secondary source machinery.

Absorption

Again following Draine 2011 Chapter 8, and substituting wavelengths for frequencies, the monochromatic absorption cross section per neutral hydrogen atom \(\varsigma(\lambda)\) at frequency \(\lambda\) can be written as

\[\varsigma^\text{abs}(\lambda) = \frac{3}{32\pi}\,A_\mathrm{SF}\,\frac{hc \,\lambda_\mathrm{SF}} {k_\mathrm{B}T_\mathrm{s}} \times \frac{\lambda_\mathrm{SF}} {\sqrt{2\pi}\,\sigma} \,\exp\left(-\frac{u^2(\lambda)} {2\sigma^2}\right) \]

where \(T_\mathrm{s}\) is the spin temperature of the hydrogen gas (see below), \(\sigma=\sqrt{k_B T/m_\mathrm{p}}\) is the velocity dispersion corresponding to the thermal motion of the atoms, and \(u(\lambda)=c(\lambda-\lambda_\mathrm{SF})/\lambda\) is the frequency deviation from the line center in velocity units.

According to Kim, Ostriker and Kim 2014 (ApJ 786:64), the spin temperature \(T_\mathrm{s}\) is essentially equal to the kinetic gas temperature \(T\) for low gas temperatures \(T<1000~\mathrm{K}\). For higher gas temperatures, it also depends on other gas properties, with an upper bound that never exceeds a fixed maximum value, i.e. \(T_\mathrm{s,upper} \lesssim 5000~\mathrm{K}\) (see their Figure 2).

To avoid the need for defining additional gas properties in the input model, we here use an approximate upper bound for the spin temperature given by

\[ T_\mathrm{s}= 6000~\mathrm{K} \times \left( 1-\mathrm{e}^{-T/5000~\mathrm{K} } \right).\]

Because the absorption cross section is inversely proportional to the spin temperature, this yields an approximate lower bound for the cross section.

When an item of this type is used, the names provided by the conditional value expression "CustomMediumState,DynamicState" are inserted into the name sets used for evaluating Boolean expressions.

Constructor & Destructor Documentation

◆ SpinFlipHydrogenGasMix()

SpinFlipHydrogenGasMix::SpinFlipHydrogenGasMix ( )
inlineprotected

Default constructor for concrete Item subclass SpinFlipHydrogenGasMix : "A gas mix supporting the spin-flip 21 cm hydrogen transition" .

Member Function Documentation

◆ defaultMetallicity()

SpinFlipHydrogenGasMix::defaultMetallicity ( ) const
inline

This function returns the value of the discoverable double property defaultMetallicity : "the default metallicity of the gas" .

The minimum value for this property is "]0" .

The maximum value for this property is "0.2]" .

The default value for this property is given by the conditional value expression "0.02" .

This property is displayed only if the Boolean expression "Level2" evaluates to true after replacing the names by true or false depending on their presence.

◆ defaultNeutralSurfaceDensity()

SpinFlipHydrogenGasMix::defaultNeutralSurfaceDensity ( ) const
inline

This function returns the value of the discoverable double property defaultNeutralSurfaceDensity : "the default neutral hydrogen surface density" .

This property represents a physical quantity of type "masssurfacedensity" .

The minimum value for this property is "]0 Msun/pc2" .

The maximum value for this property is "1e9 Msun/pc2]" .

The default value for this property is given by the conditional value expression "10 Msun/pc2" .

This property is displayed only if the Boolean expression "Level2" evaluates to true after replacing the names by true or false depending on their presence.

◆ defaultTemperature()

SpinFlipHydrogenGasMix::defaultTemperature ( ) const
inline

This function returns the value of the discoverable double property defaultTemperature : "the default temperature of the gas" .

This property represents a physical quantity of type "temperature" .

The minimum value for this property is "[3" .

The maximum value for this property is "1e9]" .

The default value for this property is given by the conditional value expression "1e4" .

This property is displayed only if the Boolean expression "Level2" evaluates to true after replacing the names by true or false depending on their presence.

◆ hasDynamicMediumState()

DynamicStateType SpinFlipHydrogenGasMix::hasDynamicMediumState ( ) const
overridevirtual

This function returns DynamicStateType::Secondary, indicating that this material mix has a dynamic medium state with updates that affect only secondary emission.

Reimplemented from MaterialMix.

◆ hasExtraSpecificState()

bool SpinFlipHydrogenGasMix::hasExtraSpecificState ( ) const
overridevirtual

This function returns true, indicating that the cross sections returned by this material mix depend on the values of specific state variables other than the number density.

Reimplemented from MaterialMix.

◆ hasLineEmission()

bool SpinFlipHydrogenGasMix::hasLineEmission ( ) const
overridevirtual

This function returns true, indicating that this material supports secondary line emission from gas.

Reimplemented from MaterialMix.

◆ indicativeTemperature()

double SpinFlipHydrogenGasMix::indicativeTemperature ( const MaterialState state,
const Array Jv 
) const
overridevirtual

This function returns an indicative temperature of the material mix when it would be embedded in a given radiation field. The implementation in this class ignores the radiation field and returns the temperature stored in the specific state for the relevant spatial cell and medium component. Because the hydrogen temperature is not calculated self-consistently in our treatment, this value corresponds to the temperature defined by the input model at the start of the simulation.

Reimplemented from MaterialMix.

◆ initializeSpecificState()

void SpinFlipHydrogenGasMix::initializeSpecificState ( MaterialState state,
double  metallicity,
double  temperature,
const Array params 
) const
overridevirtual

This function initializes the specific state variables requested by this material mix through the specificStateVariableInfo() function except for the number density. For this class, the function initializes the temperature, metallicity and neutral hydrogen mass surface density to the specified imported values, or if not available, to the user-configured default values. The atomic hydrogen fraction is set to zero.

Reimplemented from MaterialMix.

◆ lineEmissionCenters()

Array SpinFlipHydrogenGasMix::lineEmissionCenters ( ) const
overridevirtual

This function returns a list including a single item: the line center of the 21 cm hydrogen spinflip transition.

Reimplemented from MaterialMix.

◆ lineEmissionMasses()

Array SpinFlipHydrogenGasMix::lineEmissionMasses ( ) const
overridevirtual

This function returns a list including a single item: the mass of the particle emitting the 21 cm line, i.e. the hydrogen atom.

Reimplemented from MaterialMix.

◆ lineEmissionSpectrum()

Array SpinFlipHydrogenGasMix::lineEmissionSpectrum ( const MaterialState state,
const Array Jv 
) const
overridevirtual

This function returns a list including a single item: the 21 cm line luminosity in the spatial cell and medium component represented by the specified material state and the receiving material mix when it would be embedded in the specified radiation field.

Reimplemented from MaterialMix.

◆ mass()

double SpinFlipHydrogenGasMix::mass ( ) const
overridevirtual

This function returns the mass of a neutral hydrogen atom.

Implements MaterialMix.

◆ opacityAbs()

double SpinFlipHydrogenGasMix::opacityAbs ( double  lambda,
const MaterialState state,
const PhotonPacket pp 
) const
overridevirtual

This function returns the 21 cm absorption opacity \(k^\text{abs}= n_mathrm{HI} \varsigma^\text{abs}\) for the given wavelength and material state. The photon packet properties are not used.

Implements MaterialMix.

◆ opacityExt()

double SpinFlipHydrogenGasMix::opacityExt ( double  lambda,
const MaterialState state,
const PhotonPacket pp 
) const
overridevirtual

This function returns the 21 cm extinction opacity \(k^\text{ext}=k^\text{abs}\) for the given wavelength and material state, which equals the absorption opacity because the scattering opacity is zero. The photon packet properties are not used.

Implements MaterialMix.

◆ opacitySca()

double SpinFlipHydrogenGasMix::opacitySca ( double  lambda,
const MaterialState state,
const PhotonPacket pp 
) const
overridevirtual

This function returns the 21 cm scattering opacity \(k^\text{sca}\) which is trivially zero at all wavelengths.

Implements MaterialMix.

◆ parameterInfo()

vector< SnapshotParameter > SpinFlipHydrogenGasMix::parameterInfo ( ) const
overridevirtual

This function returns the number and type of import parameters required by this particular material mix as a list of SnapshotParameter objects. For this class, the function returns a descriptor for the neutral hydrogen mass surface density import parameter. Importing metallicity and temperature should be enabled through the corresponding standard configuration flags.

Reimplemented from MaterialMix.

◆ peeloffScattering()

void SpinFlipHydrogenGasMix::peeloffScattering ( double &  I,
double &  Q,
double &  U,
double &  V,
double &  lambda,
Direction  bfkobs,
Direction  bfky,
const MaterialState state,
const PhotonPacket pp 
) const
overridevirtual

This function does nothing because the 21 cm line does not scatter.

Implements MaterialMix.

◆ performScattering()

void SpinFlipHydrogenGasMix::performScattering ( double  lambda,
const MaterialState state,
PhotonPacket pp 
) const
overridevirtual

This function does nothing because the 21 cm line does not scatter.

Implements MaterialMix.

◆ sectionAbs()

double SpinFlipHydrogenGasMix::sectionAbs ( double  lambda) const
overridevirtual

This function returns the 21 cm absorption cross section per neutral hydrogen atom at the given wavelength and using the default gas properties configured for this material mix.

Implements MaterialMix.

◆ sectionExt()

double SpinFlipHydrogenGasMix::sectionExt ( double  lambda) const
overridevirtual

This function returns the total 21 cm extinction cross section per neutral hydrogen atom at the given wavelength and using the default gas properties configured for this material mix. The extinction cross section is identical to the absorption cross section because the scattering cross section is zero.

Implements MaterialMix.

◆ sectionSca()

double SpinFlipHydrogenGasMix::sectionSca ( double  lambda) const
overridevirtual

This function returns the 21 scattering cross section per neutral hydrogen atom, which is trivially zero for all wavelengths.

Implements MaterialMix.

◆ setupSelfBefore()

void SpinFlipHydrogenGasMix::setupSelfBefore ( )
overrideprotectedvirtual

This function determines the radiation field wavelength bin containing the UV field strength.

Reimplemented from MaterialMix.

◆ specificStateVariableInfo()

vector< StateVariable > SpinFlipHydrogenGasMix::specificStateVariableInfo ( ) const
overridevirtual

This function returns a list of StateVariable objects describing the specific state variables used by the receiving material mix. For this class, the function returns a list containing descriptors for the properties defined in the input model (neutral hydrogen number density, metallicity, temperature, and neutral hydrogen mass surface density) and for a variable to hold the atomic hydrogen fraction derived from the radiation field when the dynamic medium state is updated.

Implements MaterialMix.

◆ updateSpecificState()

UpdateStatus SpinFlipHydrogenGasMix::updateSpecificState ( MaterialState state,
const Array Jv 
) const
overridevirtual

Based on the specified radiation field and the input model properties found in the given material state, this function performs the partitioning scheme described in the class header and stores the resulting atomic hydrogen fraction back in the given material state. The function returns the update status as described for the UpdateStatus class.

Reimplemented from MaterialMix.


The documentation for this class was generated from the following file: